Estimation

Class Medians for: Step Length _____ Steps in 1 Minute

A group of fifth-grade students in New Zealand are going camping. They will hike from Wellington to Ruapehu. Then they will follow a trail for another ½ mile to their campsite. Use the map on this page (Scale: 1 inch = 400 miles) as well as your class median step length, and number of steps in 1 minute, to make the following estimates. (Reminder: 1 mile = 5,280 feet)

1. About how many miles is it from Wellington to Ruapehu? _ (unit)

2. About how many miles is it from Wellington to the campsite? _ (unit)

- 3. About how long would it take the students to arrive at their campsite, if they don't make any stops? (unit)
- 4. Each day, the students will hike for 12 hours and take 12 hours for stops to eat, rest, and sleep. If they leave at 7:00 A.M. on a Monday morning, at about what time, and on what day would you expect them to arrive at their campsite?

Time: About _____ Day: ____

Try This

5. Suppose the students take a bus from Wellington to Mt. Cook and then hike to a campsite at the top of the mountain. Would they have to hike more or less than the distance they hiked to their campsite at Ruapehu?

- **6.** 48 * 15 = _____
- 7. 24,029 + 26,840 + 39,492 = 1
- **8.** 36 / 3 = _____
- **9.** 35 17 = ____

STUDY LINK

Number Hunt

Reminder: A means Do not use a calculator.

Use the numbers in the following table to answer the questions below. You may not use a number more than once.

- 1. Circle two numbers whose sum is 832.
- 2. Make an X in the boxes containing three numbers whose sum is 57.
- 3. Make a check mark in the boxes containing two prime numbers whose sum is 42.

85.2	533	571
525	20	17.5
261	20.5	125
23	901	30
	525 261	525 20 261 20.5

- 4. Make a star in the boxes containing two numbers whose sum is 658.
- 5. Make a triangle in the boxes containing two numbers whose sum is 105.7. Explain how you found the answer.

Solve Problems 6-9 using any method you want. Show your work in the space below.

STUDY LINK 2-3

Another Number Hunt

Use the numbers in the following table to answer the questions below. You may not use a number more than once.

- 1. Circle two numbers whose difference is 152.
- 2. Make an X in the boxes of two numbers whose difference is 25.6.
- 3. Make a check mark in the boxes of two numbers whose difference is greater than 1,000.

17	15	9	75.03
100.9	803	25	451
1,500	5,000	1	3,096
299	703	75.3	40.03

- 4. Make a star in the boxes of two numbers whose difference is less than 10.
- 5. Make a triangle in the boxes of two numbers whose difference is equal to the sum of 538 and 259.
- **6.** Use diagonal lines to shade the boxes of two numbers whose difference is equal to 4^2 .

Subtract. Show your work for one problem on the grid below.

e. Answer: _

Open Sentences and Number Stories

Read each problem. Fill in the blanks and solve the problem.

1.		Ithea and her brother collect baseball cards. Althea has 148 cards. er brother has 127 cards. How many cards do they have altogether?	223
	a.	List the numbers needed to solve the problem.	
	b.	Describe what you want to find.	
	C.	Open number sentence:	
	ď.	Solution: e. Answer:	(unit)
2.	Ma \$2	ark bought a hamburger for \$3.89 and a drink for \$1.49. If he paid with a 20 bill, how much change did he receive?	(driit)
	a.	List the numbers needed to solve the problem.	
	b.	Describe what you want to find.	
	c.	Open number sentence:	
	ď.	Solution: e. Answer: (unit)	
3.	0.6	an has four pieces of ribbon. Each piece of ribbon is a different length: 6 meters long, 1.15 meters long, 1.35 meters long, and 0.925 meters long. ow many meters of ribbon does Fran have in all?	
	a .	List the numbers needed to solve the problem.	
	b.	Describe what you want to find.	
		Open number sentence:	
	ď.	Solution:	

(unit)

Comparing Reaction Times

Use your Grab-It Gauge. Collect reaction-time data from two people at home. At least one of these people should be an adult.

1.

Per	son 1
Left	Right
	,

Pers	on 2
Left	Right
	,

3. Median times:

Left hand _____

Right hand _____

4. Median times:

Left hand _____

Right hand _____

5. How do the results for the two people compare to your class data?

			12,000	

How Likely Is Rain?

Many years ago, weather reports described the chances of rain with phrases such as *very likely, unlikely,* and *extremely unlikely.*Today, the chances of rain are almost always reported as percents. For example, "There is a 50% chance of rain tonight."

1. Use the Probability Meter Poster to translate phrases into percents.

Phrase	Percent
Unlikely	30%
Very likely	
Very unlikely	
Likely	
Extremely unlikely	

2. Use the Probability Meter Poster to translate percents into phrases.

Percent	Phrase
30%	Unlikely
5%	· ·
99%	
20%	
80%	
35%	
65%	
45%	

STUDY LINK

Magnitude Estimates

A magnitude estimate is a very rough estimate. It tells whether the exact answer falls in the tenths, ones, tens, hundreds, thousands, and so on. For each problem, make a magnitude estimate. Ask yourself: Is the answer in the tenths, ones, tens, hundreds, thousands, or ten-thousands? Circle the appropriate box. Do not solve the problems.

Example: 18 * 21 1. 73 * 28 100s 1,000s 10,000s 10s 10s 100s 1,000s 10,000s How I estimated How I estimated **2.** 12 * 708 3. 98 * 105 10s 100s 1,000s 10,000s 10s 100s 1,000s 10,000s How I estimated How I estimated 4. 17 * 2.2 5. 2.6 * 3.9 10s 100s 1,000s 10,000s 0.1s1s 10s 100s How 1 estimated How I estimated

Try This

6. Use the digits 4, 5, 6, and 8. Make as many factor pairs as you can that have a product between 3,000 and 5,000. Use a calculator to solve the problems.

Copyright @ Wright Group/McGraw-Hill

STUDY LINK 2.8

Estimating and Multiplying

- For each problem, make a magnitude estimate.
- ♦ Circle the appropriate box. Do not solve the problem.
- Then choose 3 problems to solve. Show your work on the grid.

	T		_
10s	100s	1,000s	10,000s

How I estimated

10s	100s	1,000s	10,000s
-----	------	--------	---------

How I estimated

	100s	1,000
 \perp	1008	1,000

How I estimated

STUDY LINK **2+9**

Multiply with the Lattice Method

For each problem:

♦ Make a magnitude estimate. Circle the appropriate box.

Solve using the lattice method. Show your work in the grids.

4.	94	*	73	=			
	•						

1	0s	100s	1,000s	10,000s
---	----	------	--------	---------

0.1s	1s	10s	100s
------	----	-----	------

010	10	100	1009
0.10	10	105	1005

	T		
100s	1,000s	10,000s	100,000s

5. 17.7 * 19.3 = _

			1
0.1s	1s	10s	1009
			. 500

- **6.** 7,402 + 2,587 = _____
- **7.** 37 ÷ 7 → _____
- **8.** 328 237 = _____
- **9.** \$15.75 + \$3.25 = _____

Place-Value Puzzles

Millions			T	housand	S	Ones		
Hundred- millions			Hundred- thousands	Ten- thousands	Thousands	Hundreds	Tens	Ones

Use the clues to solve the puzzles.

Puzzle 1

- ◆ The value of the digit in the thousandths place is equal to the sum of the measures of the angles in a triangle (180°) divided by 30.
- ◆ If you multiply the digit in the tens place by 1,000; the answer will be 9,000.
- Double 35. Divide the result by 10. Write the answer in the tenths place.
- The **hundreds**-place digit is $\frac{1}{2}$ the value of the digit in the thousandths place.
- ♦ When you multiply the digit in the ones place by itself, the answer is 0.
- Write a digit in the hundredths place so that the sum of all six digits in this number is 30.

What is the number?	}	

Puzzle 2

- Double 12. Divide the result by 8. Write the answer in the thousands place.
- ◆ If you multiply the digit in the hundredths place by 10, your answer will be 40.
- The **tens**-place digit is a prime number. If you multiply it by itself, the answer is 49.
- Multiply 7 and 3. Subtract 12. Write the answer in the thousandths place.
- Multiply the digit in the hundredths place by the digit in the thousands place. Subtract 7 from the result. Write the digit in the tenths place.
- The digit in the ones place is an odd digit that has not been used yet.
- The value of the digit in the hundreds place is the same as the number of sides of a quadrilateral.

What is the number? _	 ,		-		
-----------------------	---------------	--	---	--	--

Check: The sum of the answers to both puzzles is 3,862.305.